If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+a-64=8
We move all terms to the left:
a^2+a-64-(8)=0
We add all the numbers together, and all the variables
a^2+a-72=0
a = 1; b = 1; c = -72;
Δ = b2-4ac
Δ = 12-4·1·(-72)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*1}=\frac{-18}{2} =-9 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*1}=\frac{16}{2} =8 $
| 0.7n-6-0.3n=6.8 | | -4x-4=-13 | | 8=x-(-7) | | 3e^2+10e-8=0 | | 2(4)(l+7)=144 | | 14-29+5=2q+9 | | 3e^2=10e-8 | | 17-x=31-17 | | 9+3y+1=31 | | (3x-10)=(-4x+6) | | 1/2(-4x+18)=15 | | 2m÷3=8÷3m | | 74.2=38.06+x | | -4(5-5n)-6(n-6)=-26 | | 6÷13=18÷x | | -10x+3(8x+8)=-6(x-4) | | 9x^{2}+3=12x | | 6s+8=263s+4 | | 3·(x+1)=2·(x+6) | | 3·(1x+1)=2·(1x+6) | | 5x-19=4x+17 | | 10+15x=105 | | 5y+40=5y-6 | | 5x-6=13+3x | | 3x^2-6x-4x-8=0 | | 4n+8=2n-16 | | -6x(5-7)+2x=-5x+11-7x | | v÷-8=7 | | q-72=-71 | | (2x+1)(2x+1)=(x-3)(x-3) | | 2/9t-3=5 | | 8(l+7)=144 |